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R-PROGRAMMING

Packages, data visualization and examples
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Download:
http://www.r-project.org

Recommended tutorial: 
http://cran.r-project.org/doc/contrib/Paradis-
rdebuts_en.pdf

is a language and environment 
for statistical computing and 

graphics, a GNU project.
R provides a wide variety of 

statistical (linear and nonlinear 
modeling, classical statistical 
tests, time-series analysis, 

classification, clustering, ...) and 
graphical techniques, and is 

highly extensible.
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1.Why to use R?

• Open-source, multiplatform, extensible;

• Easy on users with familiarity with S/S+, 
Matlab, Python or IDL;

• Active and growing community:

– Google, Pfizer, Merck, Bank of America,
Boeing, the InterContinental Hotels Group 
and Shell.

I. R-programming II. Data Analysis III. Case study IV. HPC



2.R in the scientific community

• Google summer of code and projects using R-project to 
mine large datasets: 
http://www.r-project.org/SoC08/ideas.html

• With Pfizer: 

– predict the safety of compounds, specifically carcinogenic side carcinogenic side 

effects in potential drugseffects in potential drugs. 

– models eliminate the expensive and time-consuming process of 

studying a large number of potential compounds in the physical 

laboratory…”

http://www.bio-medicine.org/medicine-news-1/Pfizer-Partners-with-
REvolution-Computing-to-Improve-Medicine-Production-Pipeline-17917-
2/
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2.1. You R with NERSC

• Get started with R on DaVinci:

> module load R

> R

>help()

>demo()

>help.start()

>source(‘your_function.R’)

>library(package_name)

http://www.nersc.gov/nusers/analytics/analysis/R.php
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3.Extensible

• Add-on packages:

– Data input/output: hdf5, Rnetcdf, DICOM, etc.

– Graphics: trellis, gplot, RGL, fields, etc.

– Multivariate analysis: MASS, mclust, ape, etc.

– Other languages: Rcpp, Rpy, R.matlab, etc.

I. R-programming II. Data Analysis III. Case study IV. HPC
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4.Statistical analysis and graphs

• Histogram

• Density

• Boxplot

• Multivariate plot

• Conditioning plot

• Contour plot

I. R-programming II. Data Analysis III. Case study IV. HPC
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4.1.Multivariate plots

> data=read.table('ozone.txt', 
header=T)

> names(data)

[1] "rad"   "temp"  "wind"  "ozone“

> pairs(data,panel.smooth)
#panel.smooth = locally-weighted polynomial regression 

Ex: Explanatory variables: solar radiation, temperature, wind and the 

response variable ozone; 

- use of pairs() with dataframes to check for dependencies between the 

variables. 
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4.2.Conditional plots

• Check the relation of the two 
explanatory variables wind, 

temp and the response 
variable ozone:

– Low temp: no influence of wind 

on levels of zone;

– High temp: negative 

relationship between wind 

speed and ozone concentraton

>coplot(ozone~wind|temp,panel=panel.smooth)

I. R-programming II. Data Analysis III. Case study IV. HPC
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4.3. Package RGL for 3D visualization

• OpenGL

> rgl.demo.lsystem() - kernel density estimation

Use Visit: https://wci.llnl.gov/codes/visit/



13

5.Profiling
several.times <- function (n, f, ...) {
for (i in 1:n) {
f(...)

}
}

matrix.multiplication <- function (s) {
A <- matrix(1:(s*s), nr=s, nc=s)
B <- matrix(1:(s*s), nr=s, nc=s)
C <- A %*% B

}

v <- NULL
for (i in 2:10) {

v <- append(
v,
system.time(

several.times(
10000,
matrix.multiplication,
i

)
) [1]

)
}
plot(v, type = 'b', pch = 15,

main = "Matrix product computation  time")

• Where does your 
program spend more 
time?

Variable number 
of arguments

Also try packages: 
profr and proftools
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EXPLORATORY DATA ANALYSIS

Basics and beyond
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1. Statistical analysis

• Statistical modeling: check for variations in the 

response variable given explanatory variables;

– Linear regression

• Multivariate statistics: look for structure in the 
data;

– Clustering:

• Hierarchical

– Dendrograms

• Partitioning

– Kmeans (stats)

– Mixture-models (mclust)

I. R-programming II. Data Analysis III. Case study IV. HPC
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2.Linear regression
• Ex: Find the equation that best fit the data, given the 

decay of radioactive emission over a 50-day period

• Linear regression: variables expected to be linearly related;

• Maximum likelihood estimates of parameters = least squares;

I. R-programming II. Data Analysis III. Case study IV. HPC



2.1.Linear regression
data = read.table('sapdecay.txt',header=T)

attach(data)

#  the log(y) gives a rough idea of the decay constant, a, for these data by linear regression of log(y) against x

mylm = lm(log(y)~x)

print(mylm$coefficients)

# sum of squares of the difference between the observed yv and predicted yp values of y, given a specific 

value of parameter a

sumsq <-function(a,xv=x,yv=y)

{

yp = exp(-a*xv) #predicted model for y

sum((yv-yp)^2)

}

a=seq(0.01,0.2,.005)

sq=sapply(a,sumsq)

decayK=a[min(sq)==sq] #this is the least-squares estimate for the decay constant

days=seq(0,50,0.1)

par(mfrow=c(1,3))

plot(x,y,main='Decay of radioactive emission over a 50-day period',xlab='days')

plot(a,sq,type='l',xlab='decay constant',ylab='sum of squares of (observ - predicted)')

matplot(decayK,min(sq),pch=19,col='red',add=T)

plot(x,y); lines(days,exp(-decayK*days),col='blue‘)

detach()
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3.Cluster analysis

• Hierarchical

– dendrogram(stats)

• Partitioning

– kmeans (stats)

• Mixture-models: 

– Mclust (mclust)

Iris dataset: 150 samples of Iris 

flowers described in terms of its 
petal and sepal length and width

I. R-programming II. Data Analysis III. Case study IV. HPC



3.1.Hierarchical clustering
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• Analysis on a set of 

dissimilarities, combined 

to agglomeration methods 

for analyzing it:

• Dissimilarities: Euclidean, 

Manhattan, …

• Methods:

– ward, single, complete, 
average, mcquitty, 
median or centroid.

I. R-programming II. Data Analysis III. Case study IV. HPC



3.2.K-means

• Split n observations into k
clusters;

– each observation belongs 

to the cluster with the 

nearest mean. 

20

setosa versicolor virginica

1      0         48        14

2      0          2        36

3     50          0         0
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3.3. Model-based clustering

• Mixture Models

– Each cluster is mathematically 

represented by a parametric distribution;

– Set of k distributions is called a mixture, 
and the overall model is a finite mixture 
model;

– Each probability distribution gives the 
probability of an instance being in a given 
cluster.
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Case study

Accelerated laser-wakefield particles

http://www.lbl.gov/publicinfo/newscenter/features/2008/apr/af-bella.html



IV. HPC

time steps

• C. Geddes (LBNL) in LOASIS program headed by W. 
Leemans and SciDAC COMPASS project. 

•• Highlights:Highlights:
– Described compact electron clouds
using minimum enclosing ellipsoids;

– Developed algorithms to adapt
mixture model clustering to large datasets;

•• Science Impact:Science Impact:
– Automated detection and analysis of 
compact electron clouds;

– Derived dispersion features of electron clouds;
– Extensible algorithms to other science problems;

•• Collaborators:Collaborators:
– Tech-X
– Math Group, LBNL

– UCDavis, University of Kaiserlautern

Knowledge discovery in LWFA science 
via machine learning

I. R-programming II. Data Analysis III. Case study
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Framework

• Goal: automate the analysis of electron bunches by 
detecting compact groups of particles, with similar 
momentum and spatio-temporal coherence.

I. R-programming II. Data Analysis III. Case study IV. HPC



25

B1. Select relevant particles

• Beams of interest are 

characterized by high density of 
high-energy particles: 

1. Elimination of low energy particles 
(px<1e10)

– Wake oscillation: px<=1e9

– Excludes particles of the background

2. Calculation of the simulation 
average number of particles (µs);

3. Elimination of timesteps with 
number of particles inferior to µs;

Representation of particle momentum in one 

time step: spline interpolation onto a grid for 
visualization of irregularly spaced input data.

Packages:
akima, hdf5, fields

I. R-programming II. Data Analysis III. Case study IV. HPC



26

B2.Kernel-based estimation

• Kernel density estimators are less sensitive to 
the placement of the bin edges;

• Goal: retrieve a dense group of particles with 

similar spatial and momentum characteristics:

� argmax f(x,y,px),

� Neighborhood: 2 µm

Packages:
misc3d, rgl, fields

I. R-programming II. Data Analysis III. Case study IV. HPC



27

B3. Identify beam candidates

• Detection of compact groups of particles 

independent of being a maximum in one of the 
variables;

I. R-programming II. Data Analysis III. Case study IV. HPC
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B4. Cluster using mixture models 

• Model and number of clusters 

can be selected at run time 

(mclust);

• Partition of multidimensional 

space;

• Assume that the functional 

form of the underlying 

probability density follows a 

mixture of normal distributions;

Packages:
mclust, rgl

I. R-programming II. Data Analysis III. Case study IV. HPC
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B5. Evaluation of compactness

• Bunches of interest move at speed ≈ c, hence are nearly 

stationary in the moving simulation window;

• Moving averages smoothes out short-term fluctuations and 

highlights longer-term trends.

I. R-programming II. Data Analysis III. Case study IV. HPC
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High performance computing

Packages, challenges and new businesses



1. Improve performance/reusability

• Good coding: avoid loops, vectorization;

• Extend R using C++ compiled code:

– packages: Rcpp, inline

• Reuse your Python codes: 

– Package: Rpython

• Parallelism:

– Explicit: packages Rmpi, Rpvm, nws

– Implicit: packages pnmath, pnmath0 for multithreaded math 

functions

• Use out-of-memory processing with 

– packages bigmemory and ff

31
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2. What is going on HPC in R?

• Parallelism:

– Multicore: multicore, pnmath, …

– Computer cluster: snow, Rmpi, rpvm, …

– Grid computing: GRIDR, …

• GPU: 

– gputools: parallel algorithms using CUDA + CULA

• Extremely large data:

– ff: memory mapped pages of binary flat files.

I. R-programming II. Data Analysis III. Case study IV. HPC



3. Nothing is perfect…

• Limits on individual objects: on all versions 

of R, the maximum number of elements of 

a vector is 2^31 – 1; 

• R will take all the RAM it can get (Linux 

only);

• More information, type:

>help(‘Memory-limits’) 

>gc() #garbage collector

>object.size(your_obj) #size of your object
33
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Take home

• Everything is an object. This means that your variables are objects, but so 

are output from analyses. Everything that can possibly be an object by 
some stretch of the imagination… is an object. 

• R works in columns, not rows. R thinks of variables first, and when you 
line them up as columns, then you have your dataset. Even though it seems 

fine in theory (we analyze variables, not rows), it becomes annoying when 
you have to jump through hoops to pull out specific rows of data with all 
variables.

• R likes lists. If you aren’t sure how to give data to an R function, assume it 
will be something like this: c(“item 1”, “item 2”) meaning “concatenate into a 
list the 2 objects named Item 1, Item 2”. Also, “list” is different to R from 
“vector” and “matrix” and “dataframe” etc. 

• Its open source. It won’t work the way you want. It has far too many too many 

commands commands instead of an optimized core set. It has multiple ways to do 
things, none of them really complete. People on the mailing lists revel in 
their power over complexity, lack of patience, and complete inability to 
forgive a novice. We just have to get used to it, grit our teeth, and help them 

become better people.
34http://www.nettakeaway.com/tp/R/129/understanding-r
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EXTRA SLIDES

Basic but fundamental



1.Install R

• Download R from: http://www.r-project.org

• Install the binary

• Start R

• Print one of the “cheat sheets”

• Warm up

• Customize by typing the cmd in your R session: 
install.packages(‘<name_pkg>’) 
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2.Getting started
1) your question can be a valid package name or valid 

command: 

> help(graphics) or ?plot

2) this will search anything that contain your query string:

> help.search(‘fourier’)

3) which package contains the cmd?

> find(“plot”)

4) get working directory:

> getwd() 

5) set working directory:

> setwd() 

6) variables in your R-session:

> ls( )

7) remove your variable:

> rm(mytrash_var)

8) List the objects which contain ‘n’

> ls(pat=‘n’)

9) Source a function:

> source(‘myfunction.R’)

10) Load a library

> library(fields)

workspace
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• Basic types: numeric, character, complex or logical

> v1=c(7,33,1,7) #this is a vector

> v2=1:4   #this is also a vector

> v3=array(1,c(4,4,3)) #create a multidimensional array

> i=complex(real=1,imag=3) #this is a complex number

• Functions:

> n=11; print(n); sqrt(n);

> ifelse(n>11,n+1,n%%2)

[1] 1

• Operators: + * / - ^ < <= > >= == != 

%/%, ^, %%, sqrt(): integer division, power, modulo, square root

>A%*%B   #matrix multiplication

• Packages

> install.packages()

> library(stats)

3. Simple syntax
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4.Type of objects representing data

Object Modes Allow mode 
heterogeneity ?

vector numeric, character, complex or  
logical,

No

factor numeric or character No

array numeric, character, complex or logical No

matrix numeric, character, complex or logical No

data.frame numeric, character, complex or logical YES

ts numeric, character, complex or logical No

list numeric, character, complex or logical, 
function, expression,

YES

Emmanuel Paradis (2009), R for Beginners

1) Test type of object/mode: is.type()
2) Coerce: as.type()

Ex: 
x=c(8,3,6,3)
is.character(x)
m=as.character(x)

1) Test type of object/mode: is.type()
2) Coerce: as.type()

Ex: 
x=c(8,3,6,3)
is.character(x)
m=as.character(x)



41

4.1.Creating objects

• Arrays;

• Matrices;

• Data frame: set of 
vectors of the 
same length;

• Factor: ‘category’, 
‘enumerated type’

> summary(.)

> attributes(.)
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4.2.Data input/output

• Graphical spreadsheet-like editor:

>data.edit(x) #open editor

>x=c(5,7,2,33,9,14)

>x=scan()

>data=read.table(“data.txt’,header=T)

• Ex output:

>write.table(d,“new_file.txt”)
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5. Functions
>myfun=function(x=1,y){

+ z=x+y

+ z}

> myfun(2,3)

[1] 5

• Several mathematical, statistical and graphical functions;

• The arguments can be: “data”, formulae, expressions, . . 

• Functions always need to be written with parentheses in 
order to be executed, even if there are no parameters;

– Type the function without parentheses: R will display the content 

of the function.
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5.1. Built-in functions

1. Basic functions

– sin(), cos(), exp(), log(), …

2. Distributions

– rnorm(),beta(), gamma(), binom(), cauchy(), 
mvrnorm(),…

3. Matrix algebra

– sum(), diag(), var(), det(), ginv(), eigen(),…

4. Calculus

– Ex: D(), integrate()

5. Differential equation

– Rk4() #library(odesolve)
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• Querying data:

> f=rep(2:4,each=3) #repeats each element of the 1st parameter 3X

> which(f==3) #indexes of  where f==3 holds

[1] 4 5 6

• Related commands:

> seq(), unique(), sort(), rank(), order(), rev()

• NaN is not NA:

> 0/0 

[1] NaN

> is.nan(0/0)   #this is not a number

[1] TRUE

>names=c(‘mary’,’john’,NA)  # use of not available

6.Manipulation of objects – step1

different
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• Faster operations: apply(), lapply(), sapply(), 

tapply()

– apply = for applying functions to the rows or columns 
of matrices or dataframes

>apply(M,2,max) #max of col

– lapply = for lists

>lapply(list(x=1:10,y=1:30), max)

– sapply = for vectors

>sapply(m=sapply(rnorm(2000),(function(x){x^2}))

– tapply = for tables

> mylist <- list(c(1, 2, 2,1), c("A", "A", "B","C"))

> tapply(1:length(mylist), mylist)

6.1.Manipulation of objects – step2
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• Use the command line or an editor to create a function:

• Editor:

>fact <- function (x){ ifelse (x>1,x*fat(x-1),1)}

– Save in a file name fact.R

>source(‘fact.R’)

>fact(3)

• You can also save the history:

>savehistory(‘facthistory’)

>loadhistory(‘facthistory’)

>history(5) #see last 5 commands

• Tip: save filename = function name

6.2. Create your own function
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7. Graphics

• Get a sense of what R can do: 
>demo(graphics) 

• The graphical windows are called X11 

under Unix/Linux and windows under 
Windows

• Other graphical devices: pdf, ps, jpg, png

>x11()

>windows()

>png()

>pdf()



7.1. Plot structure

• Graph parameter function: 
> par(mfrow=c(2, 2),las=2,cex=.5,cex.axis=2.5, 

cex.lab=2)

49

orientation

Changing 
defaults
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7.2.Example of data plots

> x=1:10

> layout(matrix(1:3, 3, 1))

> par(cex=1)

> plot(x[2:9],col=rainbow(9-
2+2)[2:9], pch=15:(15+ 9-
2+1)) #add to the plot

> matplot(x,pch=17,add=T);

> title('Using layout cmd')

> plot(runif(10),type='l')

> plot(runif(10),type='b')
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7.3.Creating a gif animation
library(fields) # for tim.colors

library(caTools) # for write.gif

m <- 400 # grid size 

C <- complex(real=rep(seq(-1.8,0.6, length.out=m), 

each=m), imag=rep(seq(-1.2,1.2, length.out=m), m)) 

C <- matrix(C, m, m) 

Z <- 0 

X <- array(0, c(m, m, 20)) 

for (k in 1:20) 

{

Z <- Z^2+C

X[,,k] <- exp(-abs(Z)) 

} 

col <- tim.colors(256) 

col[1] <- "transparent" 

write.gif(X, “rplot-mandelbrot.gif", col=col, delay=100) 

image(X[,,k], col=col) # show final image in R
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8.1.Data input/output – special formats

• Availabity of several libraries. Ex:

– Rnetcdf: netcdf functions and access to 
udunits calendar conversions;

– DICOM: provides functions to import and 

manipulate medical imaging data via the 
Digital Imaging and Communications in 
Medicine (DICOM) Standard.

– hdf5: interface to NCSA HDF5 library; read 
and write (only) the entire data


